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ABSTRACT 

This paper develops a procedure to find the best model. An illustration of the model-
building approach in “Multiple Binary Logit” analysis has been introduced. The 
dependent variable of Multiple Binary Logit model is a qualitative nature (taking a 
value of 0 or 1). Besides introducing multiple single independent variables into the 

model, all possible combinations of generated interaction variables are included in the 
model. In order to obtain a set of selected models, a progressive elimination (one by 
one, least significant first) of the insignificant variables is employed. It was also 
proposed to use the modified Eight Selection Criteria (8SC) by replacing SSE (sum 
square of error) Deviance Statistic (G2) to finally single out the best model. A 
numerical illustration (case study) on coronary heart disease (CHD) was included in 
order to get a clear picture of the procedure of getting the best Multiple Binary Logit 
model. In addition, there are three quantitative (age, cholesterol level and body-mass 

index (BMI)) and five qualitative independent variables (4 blood pressure categories 
and smoking habit). Detailed procedure is exposed, illustrated and explained using 
this case study. The model building approach through the Multiple Binary Logit 
model was established. It was found that interaction variables as age and BMI,  BMI 
and cholesterol level, age and blood pressure category, SBP 100-129 and DBP 60-79, 
age and blood pressure category, SBP 130-139 and DBP 80-89, BMI and blood 
pressure category, SBP 130-139 and DBP 80-89, BMI and blood pressure category, 
SBP >140 and DBP >90 and cholesterol level and blood  pressure  category, SBP 

100-129 and DBP 60-79  are significant in the best model obtained. The dummy 
variables blood pressure category, SBP >140 and DBP >90 and smoking/non 
smoking are significant in the best model obtained.  
 
Keywords: model-building approach, Multiple Binary Logit, interaction variables, 
elimination procedure, M8SC, Deviance Statistics 

 

 

INTRODUCTION 

Multiple Binary Logit (MBL) is the extension of Logit model. MBL is 

known as qualitative choice model. The difference between Multiple 

Regressions (MR) and MBL is the characteristic of the dependent variable 
and the procedures involved in estimating the parameters. Due to the nature 

of the dependent variable, Binary Logit model cannot be estimated using 

ordinary least squares (OLS). A more suitable estimation method to estimate 
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parameters in the Binary Logit model is Maximum Likelihood (ML). 

Studenmund (2006) stated that ML estimation is inherently different from 
OLS in that it chooses coefficient estimates that maximise the likelihood of 

the sample data set being observed. OLS and ML estimates are not 

necessarily different from a linear equation that meets classical assumptions. 
It has a number of desirable large sample properties. ML is consistent and 

asymptotically efficient.  ML has the added advantage of producing 

normally distributed coefficient estimates with very large samples, allowing 

the use of typical hypothesis testing techniques.  
 

The main objective of this work is to illustrate the model-building 

approach. The whole structure starting from identifying the dependent and 
independent variable to getting the best MBL model will be illustrated using 

a numerical illustration. The best MBL model will represent the whole 

structure of the collected data so that further analysis can be carried out. 

 
 

METHODOLOGY 

The Logit model is based on the cumulative logistic regression. It 

will give probability estimates that are bounded by 0 and 1. The dependent 

variable set up differently in Logit model (Halcoussis, 2005).  The Logit 

model is similar in form to the linear regression model.  The general 
Multiple Binary Logit model is   

 

0 1 1 2 2Y W W ... W u
k k

= Ω + Ω + Ω + + Ω +     (1) 

 

and  

ln
1

i

i

i

p
Y

p

 
=  

− 
                                              (2)           

 

where Y denotes the binary dependent variable, Wj denotes the j-th variable 
(which can be single independent variable, or interaction variable (first-order 

interaction, second-order interaction, third-order interaction, ...), generated 

variable (polynomial and dummy variable) and transformed variables 
(Ladder transformation and Box-Cox transformation). The Ω0 denotes the 

constant term of the model and the Ωj denotes the j-th coefficient of 

independent variable Wj. The k denotes the number of independent 

variables, (k+1) denotes the number of parameters and pi is the i-th 
probability of an event occurring for i=1, 2, …, n and j=1, 2, ..., k. The pi is 

the i-th probability of an event occurs whereas 1-pi is the compliment event 

of pi. Fitted value for the dependent variable is now representing the 
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logarithm of the odds that Y equals to 1. According to Halcoussis (2005) a 

change in an independent variable affects the logarithm of the odds that Y 

equals to 1. A coefficient estimate from a Binary Logit (BL) model tells us 

the change in the logarithm of the odds for one unit change in an 

independent variable. Other independent variables are kept constant. In BL 
the final estimated value is in the form of probability where pi is to be 

estimated. 

 

In the development of the mathematical model, there are four 

phases involved. The phases are possible models, selected models, 

best model and goodness-of-fit test. The four phases are as follows: 

 
Phase 1: All Possible Models 

- Single independent variables and all possible product of related 

single independent variables (interaction variables) 

 
Phase 2: Selected Models 

- Eliminate source variable(s) of multicollinearity phenomenon 

- Elimination, discard a variable with |tcal| less than critical value 
and nearest to zero 

 

Phase 3: Best Model 

- Using 8SC: minimise for each criterion and mark the chosen 
model. The most preferred model by the criteria is the best 

model.  

 
Phase 4: Goodness-of-Fit  

- Deviance and Pearson Chi-Square test 

 
These four phases will be discussed accordingly in the following 

section. These are the main phases in model-buliding approach. Each phase 

has its specific tests and justification. 

 

All Possible Models 

Before the analysis is carried out, the entire possible models up to complete 
higher-order interaction variables must be listed out and considered. This is 

to help in determining the significant variables that contribute to the 

dependent variable. Eventually, only the contributing variables stay in the 
best model. The number of possible models can be calculated as follows 

(Zainodin and Khuneswari, 2007; 2009): 
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where qCj is defined as 
!

!( )!

q

j q j−
 number of possible combinations and q is 

number of single independent variables (for j=1, 2, 3, ...,q). 

 

Selected Models 

Consider each possible model to be written in terms of model (1). Observe 

correlation coefficient matrix of all the variables involve in the model. If 

multicollinerity phenomenon exists then remove the source variable(s). 
Next, let’s consider a model with k variables (with k+1 number of 

parameters which include the constant term) as one of the possible models. 

In the process of getting the selected model from possible models, Global 

test, Coefficient test (eliminating insignificant variables) and Wald test 
should be carried out to get significant variable that contributed to the 

dependent variable.  

 

Global Test 

The Global test is carried out to investigate whether it is possible for all the 

independent variables in the model to have zero net regression coefficients 
(Zainodin and Khuneswari, 2007). The global test is carried out for all the 

possible models. The hypothesis for global test is as follows: 

 

0 1 1H : ... = = 0
k k−Ω = = Ω Ω  

1H : at least one 'Ω s is nonzero 

 

The Fcal is ( ) [ ]/ /( 1)SSR k SSE n k− −  (where SSR is the sum of square 

regression due to the considered model and SSE is sum of square error) and 

Fcritical is F (k, (n-k-1), α ). The decision is to reject the null hypothesis where 

all the regression coefficients are zero if Fcal is greater than Fcritical. In most 

cases, the null hypothesis is rejected. Thus, indicating that at least one of the 
coefficients is nonzero. Then, the next step is to search for a nonzero 

coefficient. So the process of elimination is applied to remove non-

contributing (insignificant) variables from the model. 

 

Coefficient Test 

The next step is to perform the Coefficient test for all the coefficients in the 

model. The objective of the Coefficient test is to identify the most 
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insignificant coefficient and eliminate the corresponding insignificant 

variable. According to Zainodin and Khuneswari (2007), the Coefficient test 
is carried out by testing the coefficient of the corresponding variable with 

the value of zero. The insignificant variable will be eliminated one at a time. 

This will lead to the elimination procedure. Consider the model as defined in 
equation (1) where the dependent variable, Y is a binary variable. The 

algorithm of the elimination procedure will be shown in detail is as follows. 

 
Step 1: Estimate the parameters, Ω using Maximum Likelihood estimation. 

 

Step 2: Find the Residuals, SSE and MSE 

Residual = ˆ
i i

Y Y−  

SSE = 2

1

ˆ( )
n

i i

i

Y Y
=

−∑  and degrees of freedom, df =n-k-1 

MSE = 

2

1

ˆ( )

1

n

i i

i

Y Y

n k

=

−

− −

∑
,        2σ̂ = MSE 

Step 3: Find var( ˆ
j

Ω ) where var( ˆ
j

Ω ) = 2σ̂ Cjj  
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where Cij denotes the value of i-th row and j-th column of matrix  

T 1( )−W W   

(for i and j = 0,1, 2, ..., k) 

Cjj denotes the j-th element of the diagonal of matrix T 1( )−W W   

 

Step 4: The hypothesis of Coefficient test for j-th coefficient: 

 

0H : 0
j

Ω =  

1H : 0
j

Ω ≠  
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Step 5: Calculate the tcal =tj for each Ω’s. 

 

 tj = 
0

ˆ ( )

ˆ( )

j j

j

H

se

Ω − Ω

Ω
 for j = 1, 2, ..., k (j =0 is not tested) 

 where 

 
ˆ

j
Ω  denotes the j-th estimated coefficient value 

0
( )

j
HΩ denotes the j-th coefficient value under the null hypothesis  

se( jΩ̂ ) denotes the standard error of ˆ
j

Ω
 
and se( ˆ

j
Ω ) = ˆvar( )jΩ    

 

Step 6: The tcritical = 
,( 1)

2
n k

tα − −
 

where the level of significance is α (usually of 5%), n is the sample 

size and k+1 is the number of parameters in the final model. 

 
Step 7: Let t* be the minimum {t1, t2, ..., tk}. If  t* < |tcritical| and  t*→0,    

eliminate the corresponding independent variable for all possible 
coefficients where j=1, 2, ..., k. 

 
Step 8: Repeat the Step 1 to Step 7 until there is no more independent 

variable with t* < |tcritical|. Otherwise, the selected model is achieved. 

 
These are the eight steps (Step 1 to Step 8) involved in the 

elimination procedure. The selected model is achieved once all the 
independent variables in the corresponding model are significant. 

 

Wald Test 

After the coefficient test (the omission of the most insignificant variable) 
takes place one by one, the Wald test is carried out to justify the removal of 
the insignificant variables (Zainodin and Khuneswari, 2009). In this 
situation the restricted model is the selected model whereas the unrestricted 
model is the initial possible model. Consider the following situation where: 
Unrestricted model (possible model) as defined in equation (1): 

 

U:   
0 1 1 2 2 1 1

... ...
m m m m k k

Y W W W W W u+ += Ω + Ω + Ω + + Ω + Ω + + Ω +  
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Restricted model (selected model) equation: 

 

R:   
0 1 1 2 2

...
m m

Y W W W r= Ω + Ω + Ω + + Ω +              

                         
where variables Wm+1, Wm+2, ..., Wk (not necessarily in that order) were 
removed from unrestricted model. The hypothesis of Wald test for removing 
variables Wm+1, Wm+2, ..., Wk from equation (1) is as follows: 
 

0 m 1 m 2 k
H : = ... = = 0+ +Ω = Ω Ω  

1
H : At least one 'Ω s in 

0
H is nonzero 

 
TABLE 1: ANOVA for Wald Test 

 

Source of 

variations 

Sum of 

Squares 
df Mean Sum of Squares F 

Differences 

(R-U) 

SSE(R) -

SSE(U) 
k-m 

( ) ( )SSE R SSE U

k m

 
 −

−
 

F
( ) ( ) ( )

( ) ( 1)

SSE R SSE U k m

SSE U n k

  =
− −

− −
 

  

  

Unrestricted 

(U) 
SSE(U) n-k-1 

1

( )
n k

SSE U
− −

 

Restricted  

(R) 
SSE(R) n-m-1  

 
The Table 1 shows the Fcal and the critical value is F [df(R )–df(U), df(U), 

α ] or can be written as F(k-m, n-k-1, α). The decision is to reject the null 

hypothesis if Fcal is greater than Fcritical. If the null hypothesis is accepted, it 

justified the elimination of insignificant variables as stated in earlier section 
(Coefficients Test). Similar procedure is carried out for all the remaining 

selected models. 

 

Best Model 

The Best Model will be determined from selected models that were obtained 

from previous test conducted in the previous section. The best model will 
eventually emerge when selection criteria is used. In obtaining the best 

model, Zainodin and Khuneswari (2007; 2009) have explained in detail the 

use of Eight Selection Criteria (8SC). Each of the selected models is 

subjected to each of the Model Selection Criterion.  
 

The model selection criteria are Akaike information criterion (AIC), finite 

prediction error (FPE), generalised cross validation (GCV), Hannan and 
Quinn criterion (HQ), RICE, SCHWARZ, SGMASQ and SHIBATA.  Finite 

prediction error (FPE) and Akaike information criterion (AIC) was 
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developed by Akaike (1969, 1974). HQ criterion was suggested by Hannan 

and Quinn in 1979.  Golub et al. (1979) developed generalised cross 
validation (GCV). Other criteria are included SCHWARZ (Schwarz, 1978), 

SHIBATA (Shibata, 1981) and RICE (Rice, 1984). These criteria take the 

form of the sum square of error (SSE) multiplied by a penalty factor that 
depends on the model complexity as measured by the number of parameters 

(k+1) to be estimated. SGMASQ (Ramanathan, 2002) is the estimated 

residual variance ( 2σ̂ ). Detail discussion on each criterion is discussed in 

Zainodin and Khuneswari (2007; 2009).  

 

The coefficients in Multiple Binary Logit model are estimated using 
Maximum Likelihood estimation. For logistic models, the Deviance 

statistics was used as model selection criteria. As defined by Kutner et al. 

(2008), the Deviance statistic (sum squares of the deviance residuals) is 

 

 2

1

ˆ ˆ2 [ ln( ) (1 ) ln(1 )]
n

i i i i

i

Y p Y p
=

= − + − −∑G  .                                  (4) 

 
Vogelvang (2005) stated that maximising likelihood (or minimising 

Deviance) is identical to minimising the sum square of error (SSE). 

Therefore, a modification was suggested on eight selection criteria where 
SSE was replaced by Deviance statistics where G2 is -2 times the log-

likelihood.  

 
TABLE 2: Modified Eight Selection Criteria 

 

MODIFIED EIGHT SELECTION CRITERIA  (M8SC) 

AIC:  
2

2(k 1) / nG
(e)

n

+ 
 
 

 
RICE:   

12
G 2(k 1)

1
n n

−
  + 

−   
  

 

 

FPE: 
2

G n k 1

n n (k 1)

  + +
 

− + 
 SCHWARZ:  

2

2(k 1) / nG
(n)

n

+ 
 
 

 

GCV: 
22

G k 1
1

n n

−
  + 

−  
  

 SGMASQ:  
12

G k 1
1

n n

−
  + 

−   
  

 

HQ:  
2

2(k 1) / nG
(ln n)

n

+ 
 
 

 SHIBATA:  
2

G n 2(k 1)

n n

  + +
 
 
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These criteria take the form of the sum of square of deviance residual (that 

is, Deviance statistics or G2 as defined in equation (4)) multiplied by a 
penalty factor that depends on the model complexity as measured by the 

number of parameters (k+1) to be estimated. The summary of modified eight 

selection criteria (M8SC) are shown in Table 2. G2 is the Deviance statistics 
(as defined in equation (4)), k+1 is the number of estimated parameters and 

n stands for sample size. There is a condition to be fulfilled when using 

these model selection criteria, that is, 2( 1)k n+ < . After all this criteria is 

computed, that the best model can be obtained by choosing the model which 
has lowest values for most of the criteria. Finally, the best Multiple Binary 

Logit model is obtained.  

 

Goodness-of-Fit Test 

Once the best model had been obtained, the residual analysis was carried out 

to examine the appropriateness of the best model. The residual analysis for 
Multiple Binary Logit regression is more difficult than Multiple Regression 

because the dependent variable, Yi takes on only the values 0 and 1. 

Therefore, ui will take either one of the values corresponding to the Yi: 
 

 
i i

i

i i

ˆ1 p    Y 1
u

p̂    Y 0

if

if

− =
= 

− =
    for i= 1, 2, ..., n                                     (5) 

 
According to Kutner et al. (2008), the residual will not be normally 

distributed. Plots of ordinary residuals against predicted values or 

independent variables will generally be uninformative. There are two tests 
suggested by Kutner et al. (2008): Pearson Chi-Square Goodness-of-fit test 

and Deviance Goodness-of-fit test. Rosado et al. (2006) also suggested using 

Pearson Chi-Square Goodness-of-fit test to evaluate the adjustment of the 
model. The Pearson residuals (as defined by Kutner et al., 2008) is  

i i
pi

i i

ˆY - p
r

ˆ ˆp (1- p )
=                                                                          (6) 

 

where  i i
ˆ ˆp (1 p )− is the estimated standard error of Yi  for i=1, 2, ..., n. The 

sum square of the Pearson residuals is numerically equal to the Pearson chi-

square test statistics. The Pearson chi-square test statistics is 

( )
pi

2
n

i i2

r

i 1 i i

ˆY p

ˆ ˆp (1 p )
χ

=

−
=

−
∑                                                                  (7)                                
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The deviance residuals (as defined by Kutner et al., 2008) is  

 

i
dev =  sign 

i i
ˆ(Y p )−

i i i
ˆ ˆ2[Y ln(p ) (1 Y )ln(1 p )]

i
− + − −                (8) 

 

where    sign =
ii

ii

p̂Y   when

p̂Y   when

<

≥





−

+

      

for i=1, 2, ..., n.  

 

The Deviance statistics (sum squares of the deviance residuals) is 
numerically equal to the deviance statistics (as defined in equation (4)).                                        

 

Besides these two tests, scatter plot of these residual can be used as the 
supporting evidence to check the appropriateness of the model. According to 

Kutner et al. (2008), there are three common residual plots used in Binary 

Logit regression analysis: ordinary residual against estimated probability, 
Pearson residual against estimated probability and Deviance residuals 

against estimated probability. The plots suggest that if the model is correct, 

the plot of the residual against the probability ( ip ) should result 

approximately in a regression line with zero intercept.  
 

 

CASE STUDY: CORONARY HEART DISEASE 

Coronary Heart Disease is now the leading cause of death worldwide. 

According to World Health Organization (WHO, 2003), 3.8 million men and 

3.4 million women worldwide die each year from coronary heart disease. 

The coronary heart disease risk factors are divided into two categories: 
controllable and uncontrollable. The controllable risk factors are high blood 

pressure, high blood cholesterol, smoking, obesity, physical inactivity, 

diabetes and stress. Whereas the uncontrollable risk factors are gender, 
heredity (family history of CHD) and age.  

 

A study was conducted by Western Collaborative Group Study 
(WCGS) in California. The study began in July 1985 and completed in June 

1990 (Vittinghoff et al., 2004). There were 3154 male volunteers. The 

description of variables is shown in Table 3. Three quantitative and five 

qualitative independent variables associated with Coronary Heart Disease 
(CHD) were used to investigate the occurrence of coronary heart disease. 

The blood pressure was divided into four categories based on Systolic blood 

pressure (SBP) and Diastolic blood pressure (DBP) according to World 
Health Organization (WHO, 2003).   
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TABLE 3: Data Description on Variables for Coronary Heart Disease 

 

Variable Description Type of Variable 

Y 

The Coronary Heart Disease: 

1 if a coronary incident occurred  

0 if otherwise 

Qualitative 

X1 Age (in years) Quantitative 

X2 Body mass index (BMI) Quantitative 

X3 Cholesterol level (milligrams per DL) Quantitative 

D1 
1 if SBP<100 and DBP<60 

0 if otherwise 
Qualitative 

D2 
1 if SBP 100-129 and DBP 60-79  

0 if otherwise 
Qualitative 

D3 
1 if SBP 130-139 and DBP 80-89 

0 if otherwise 
Qualitative 

D4 
1 if SBP>140 and DBP>90 

0 if otherwise 
Qualitative 

D5 
1 if a person smokes  

0 if non smoker 
Qualitative 

 
The Table 4 shows the descriptive statistics for quantitative variables. 

The dependent variable, Y, and independent variables, D1, D2, D3, D4 and D5 

each is a binary variable. Therefore, the descriptive analysis could not be 

carried out to explore the data. There are 257 men (8.18%) of 3142 with 
coronary heart disease.  

 
TABLE 4: The descriptive qualitative independent variables 

 

Variables 

D1 D2 D3 D4 D5 

1’s 4 990 406 451 1495 

0’s 3138 2152 2736 2691 1647 

 
As in Table 5, could see that the variables X1, X2 and X3 have 

positive values of skewness. This means that each of these variables are 

skewed to the right and each of the variable has mode < median < mean. As 

stated by Crawley (2006), the distribution of a variable is said to be normal 
if the value of skewness fall within [-0.0437, 0.0437] and kurtosis fall within 

[-0.0874, 0.0874]. 
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TABLE 5: The descriptive Statistics for quantitative independent variables 

 

Statistics 
Variables 

X1 X2 X3 

Mean 46.2747 24.5145 226.3720 

Standard Error 0.0985 0.0457 0.7746 

Median 45 24.3898 223 

Mode 40 24.3898 212 

Standard Deviation 5.5185 2.5638 43.4204 

Sample Variance 30.4533 6.5731 1885.3300 

Kurtosis  

(Se(kutosis) = 0.0874) 
-0.7699 2.0059 3.0388 

Skewness 

(Se(skewness) = 0.0437) 
0.5262 0.5365 0.6768 

Minimum 39 11.1906 103 

Maximum 59 38.9474 645 

 
For all three variables, the value of skewness only varies between      

-0.5 to 0.68 (as in Table 5). Therefore, it shows that all these two variables 

can be assumed approximately normal according to the skewness value 
because the value is not too high. But only the variable X3 has value of 

kurtosis nearer to 3 which means that only the data for variable X3 is normal. 

However, the variables X1 and X2 are not normal since their values of 
kurtosis are below 3. 
 

TABLE 6: The Pearson correlation for Coronary Heart Disease 

 

 Y X1 X2 X3 D1 D2 D3 D4 D5 

Y 1 .120(**) .063(**) .163(**) -.011 -.095(**) .027 .083(**) .085(**) 

    .000 .000 .000 .550 .000 .131 .000 .000 

X1 .120(**) 1 .026 .089(**) -.005 -.113(**) .023 .125(**) .003 

  .000   .152 .000 .779 .000 .195 .000 .849 

X2 .063(**) .026 1 .071(**) -.022 -.239(**) .031 .243(**) -.143(**) 

  .000 .152   .000 .217 .000 .081 .000 .000 

X3 .163(**) .089(**) .071(**) 1 -.014 -.118(**) .041(*) .092(**) .097(**) 

  .000 .000 .000   .417 .000 .022 .000 .000 

D1 -.011 -.005 -.022 -.014 1 -.024 -.014 -.015 .020 

  .550 .779 .217 .417   .175 .441 .413 .272 

D2 -.095(**) -.113(**) -.239(**) -.118(**) -.024 1 -.261(**) -.278(**) .014 

  .000 .000 .000 .000 .175   .000 .000 .445 

D3 .027 .023 .031 .041(*) -.014 -.261(**) 1 -.158(**) .017 

  .131 .195 .081 .022 .441 .000   .000 .348 
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TABLE 6 (continued): The Pearson correlation for Coronary Heart Disease 

 

 Y X1 X2 X3 D1 D2 D3 D4 D5 

D4 .083(**) .125(**) .243(**) .092(**) -.015 -.278(**) -.158(**) 1 -.045(*) 

  .000 .000 .000 .000 .413 .000 .000   .012 

D5 .085(**) .003 -.143(**) .097(**) .020 .014 .017 -.045(*) 1 

  .000 .849 .000 .000 .272 .445 .348 .012   

**  Correlation is significant at the 0.01 level (2-tailed) and Correlation is significant at the 0.05 level   

(2-tailed). 

 

Based on Table 6, there is no strong relationship (significantly) 
between coronary incident with respect to age (X1), BMI (X2) and 

cholesterol level (X3). Correlation is significant at the 0.01 level (2-tailed).  

As can be seen from the highlighted triangle in Table 6, there is no existence 

of multicollinearity (|correlation coefficient| > 0.95) between the 
independent variables. Thus, no further treatment or modification is required 

on the given data set and the data is ready for further analysis.  

 

All Possible Models 

The number of all possible models for coronary heart diseases (CHD) data 

had been listed as in Table 7. Since there are three independent variables, the 
total number of possible model is 12 (using equation (1) with q=3) with all 

possible combination of variables.  
 

TABLE 7: All Possible Models for three single Independent Variables 

 

Number of 

Variables 
Individuals 

Interactions 

Total 
First-Order Second-Order 

1 3 - - 3 

2 3 3 - 6 

3 1 1 1 3 

Total 7 4 1 12 

Model 

Number  

(as in  

Appendix A) 

M1-M7 M8-M11 M12  

 

Since there are three quantitative single independent variables, 12 

possible models up to third-order interaction variables had been considered 

in the analysis. The corresponding five qualitative independent variables are 

to be added in the 12 possible models up to first-order interaction variables. 
The 12 possible models are listed in Appendix A. 
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Each possible model will be estimated systematically in the following 

step to obtain selected models with significant variables. The variable D1 
was eliminated earlier from each possible models because an error occurred 

in obtaining covariance matrix leading to error in estimating the parameters 

in the model.  
 

Selected Models 

After clearing from multicollinearity phenomenon (if exist one), the next 

step was to estimate the coefficients for the 12 possible models and carry out 

tests to obtain selected models. For illustration purpose, consider model M7 
with the following detail: 
 

1 2 3 4 50 1 1 2 2 3 3 1 2 3 4 5
( )

D D D D D
Y X X X D D D D D uβ β β β β β β β β= + + + + + + + + +

 

This model can be written in the form of equation (1) where  

 

Ω0 = β0 

Ω1 = β1 and W1 = X1 

Ω2 = β2 and W2 = X2 

Ω3 = β3 and W3 = X3 
Ω4 = βD1 and W4 = D1 

Ω5 = βD2 and W5 = D2 

Ω6 = βD3 and W6 = D3  

Ω7 = βD4 and W7 = D4 
Ω8 = βD5 and W8 = D5  
 

 

The number of independent variable is 8 (=k) and number of parameters is 9 

(=k+1). The variable D1 was eliminated earlier because an error occurred in 
obtaining covariance matrix. Therefore, only seven variables had been 

estimated. The model after variable D1 eliminated is model M7.1. Table 8 

represents the ANOVA for Global test. The hypothesis of Global test for 
model M7.1 is as follows: 

 

0
H :

2 3 4 51 2 3
0

D D D D
β β β β β β β= = = = = = =  

 
1

H :   at least one β’s in 
0

H  is nonzero 

 
As can be seen from Table 8, the Fcal is 28.5105 and the Fcritical is 

F0.05,7,3134=2.0100. Since Fcal is greater than Fcritical, the decision is to reject 

the null hypothesis where the entire regression coefficients in model M7.1 
are zero. The next step is to search for insignificant variables by performing 

the Coefficient test for the entire coefficient in the model M7.1. The 

hypothesis of Coefficient test for the first coefficient β1 is as follows: 
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0

H :
1

0β =  

 
1

H :
1

0β ≠  

 
The tcal is 5.6901 and the tcritical is t0.025, 3133=1.960. The decision is to reject 

the null hypothesis where the β1 is nonzero since |tcal| is greater than |tcritical|. 

This means that β1 is significant in the model. From Table 9, it is shown that 

dummy D1 was eliminated much earlier due to the fact that the variance of 
this D1 is far too small. Similar procedure is carried out for other coefficients 

in the model where the test leads to the elimination of variables D3 and D4 

respectively. 

 
TABLE 8: The ANOVA for Global test of model M7.1 

 

Source of 

variations 
Sum of Squares df 

Mean Sum of 

Squares 
F 

Regression 14.2293 7 2.0328  

Residuals 223.5807 3134 0.0713 28.5105 

Total 237.8100 3141   

 
The Table 9 shows the estimated coefficient value and tcal value in 

parentheses. As seen from Table 9 (model M7.1), there are two variables, 
each has |tcal| less than |tcritical|=1.96. So, the dummy variable D3 (tcal= 0.6080) 

was eliminated and the new model M7.2 was rerun.  The resulting tcal after 

eliminating variable D3 is shown in Table 9 (model M7.2). There are 

insignificant variables in the new regression model. The insignificant 
variable D4 (tcal=1.6107) was eliminated and the new model M7.3 was 

obtained. All the variables in model M7.3 are significant (|tcal| are greater 

|tcritical|). 

 
TABLE 9:  Illustration of Elimination Procedure in getting Selected Model (model M7.3) 

 

Variables 
Models 

M7.1 M7.2 M7.3 

Constant -9.9985 -9.9764 -10.2550 

X1 0.0673 

(5.6901) 

0.0674 

(5.7009) 

0.0693 

(5.9013) 

X2 0.0628 

(2.3516) 

0.0628 

(2.3520) 

0.0720 

(2.7512) 

X3 0.0108 

(7.2639) 

0.0108 

(7.2700) 

0.0110 

(7.3497) 

D2 -0.5439 

(-2.8599) 

-0.5748 

(-3.1456) 

-0.6315 

(-3.5376) 

D5 0.6431 

(4.6014) 

0.6450 

(4.6159) 

0.6386 

(4.5771) 

D4 0.3067 

(1.7127) 

0.2757 

(1.6107) 

- 
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TABLE 9 (continued):  Illustration of Elimination Procedure in getting Selected Model (model M7.3) 

 

Variables 
Models 

M7.1 M7.2 M7.3 

D3 0.1199 

(0.6080) 

- - 

D1 - - - 

Elimination Step Step 1 Step 2 

 

SSE 223.5807 223.4979 223.8264 

G
2
 1618.9652 1619.3298 1621.8572 

*tcritical  = 1.960 and value in parentheses is the tcal 

 

Table 9, shows that the sum square of deviance residuals (Deviance 

statistics) was increased from 1618.9652 (for model M7) to 1621.85724 (for 
model M7.2) through the two elimination steps. This is because the 

eliminated insignificant variables at each step from the previous model were 

absorbed into Deviance of resulting model. The next step is to justify the 
elimination of variables D3 and D4. Therefore, the Wald Test was carried out 

to justify the elimination of these two variables. 
 

The Wald test was carried out to the final model where the restricted model 

(model M7.1) is the selected model and the unrestricted model is the initial 

possible model (M7.3). 
The unrestricted model (Possible model): M7.1 
 

U :
2 3 4 50 1 1 2 2 3 3 2 3 4 5

( )
D D D D

Y X X X D D D D uβ β β β β β β β= + + + + + + + +  

 

The restricted model (Selected model): M7.3 
 

R :
2 50 1 1 2 2 3 3 2 5

( )
D D

Y X X X D D rβ β β β β β= + + + + + +  

 

The hypothesis of Wald test for removing variables D3 and D4 from model 

M7 is as follows: 
 

0
H :

3 4
0

D D
β β+ =   

1
H :

 
at least one β’s in H0 is nonzero 

 

TABLE 10: Wald test for model M7.1 and model M7.3 

 

Source of 

variations 

Sum of 

Squares 
df 

Mean Sum of 

Squares 
F 

Differences (U - R) 0.2457 2 0.1229 1.7213 

Unrestricted (U) 223.5807 3133 0.0714  

Restricted (R) 223.8264 3135   
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Based on Table 10, the decision was to accept the null hypothesis where all 

regression coefficients of variables D3 and D4 are zero since the Fcal 
(=1.7213) is less than Fcritical (F0.05, 2, 3133=3.0000). Thus, this justified the 

removal of the insignificant variables D3 and D4 in the elimination 

procedure. Therefore, the selected model is M7.3 that 

is 1 2 3 2 5
ˆ 10.2550 0.0693 0.0720 0.0109 0.6315 0.6386Y X X X D D= − + + + − + .  

 
A similar procedure and tests (Global test, Coefficient test and Wald test) 

were carried out for the remaining possible models. The summaries of 

selected models are shown in Appendix B. There are 12 selected models 
obtained in this Phase 2 (the selected models obtained, each with reduced 

number of parameters). 
 

Best Model 

The modified eight model selection criterion (M8SC) values for each 

selected model were obtained and the corresponding values are shown in 

Table 11.  

 
TABLE 11:  The corresponding selection criteria value for the selected models 

 

MODEL k+1 AIC FPE GCV HQ RICE SCHWARZ SGMASQ SHIBATA 

M1.1 5 0.5365 0.5365 0.5365 0.5383 0.5365 0.5417 0.5356 0.5365 

M2.1 5 0.5453 0.5453 0.5453 0.5472 0.5453 0.5506 0.5445 0.5453 

M3.1 5 0.5287 0.5287 0.5287 0.5305 0.5287 0.5338 0.5278 0.5287 

M4.1 6 0.5346 0.5346 0.5346 0.5368 0.5346 0.5408 0.5336 0.5346 

M5.1 6 0.5191 0.5191 0.5191 0.5213 0.5191 0.5251 0.5181 0.5191 

M6.1 6 0.5277 0.5277 0.5277 0.5299 0.5277 0.5338 0.5267 0.5277 

M7.3 6 0.5182 0.5182 0.5182 0.5203 0.5182 0.5242 0.5172 0.5182 

M8.7 9 0.5298 0.5298 0.5298 0.5331 0.5298 0.5390 0.5282 0.5298 

M9.9 7 0.5170 0.5170 0.5170 0.5195 0.5170 0.5241 0.5159 0.5170 

M10.8 8 0.5240 0.5240 0.5240 0.5269 0.5240 0.5322 0.5227 0.5240 

M11.16 11 0.5111 0.5111 0.5112 0.5151 0.5112 0.5221 0.5094 0.5111 

M12.16 12 0.5118 0.5118 0.5118 0.5161 0.5119 0.5238 0.5099 0.5118 

 

All the criteria shown in Table 11 indicate that the model M11.16 as the 

Best Model. The result of coefficient test showed that the entire coefficients 
in the best model M11.16 are significant (all the tcal value for each variable 

in the model M11.16 is greater than 1.96). Thus the best model M11.16 is 
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4

3 12 23 4

5 1 2 1 3 2 3

2 4 3 2

ˆ 9.2030 0.0190 0.0036 3.84 10 3.5378

0.6633 0.0539 0.0634 0.1259

0.1263 0.0082 .

Y X X x X D

D X D X D X D

X D X D

−= − + + − +

+ − − +

− +

     (9) 

 
The |tcal| for variables X1, X2, X13, D1, D2, D3, X1D1, X1D4, X1D5, X2D1, 

X2D2, X2D5, X3D1, X3D3, X3D4, X3D5 increased through the elimination 

steps but the |tcal| value is still less than 1.960. This shows that these 
variables are insignificant variables and were eliminated from the model. 

For the issue in Deviance statistics, in general the value increases as the 

elimination of variables is carried out. This shows that the insignificant 

variables are absorbed into Deviance statistics of the later model. The Table 
12 shows the illustration of elimination procedure in getting a Selected 

Model (model M11.16) and because of space constraint, just a part of the 

illustration of elimination procedure is shown in Table 12. 

 
TABLE 12: Illustration of Elimination Procedure in getting Best Model (model M11.16) 

 

Variables 
Models 

M11 M11.1 ... M11.14 M11.15 M11.16 

Constant -12.7159 -12.7159 ... -13.4737 -12.9191 -9.2030 

X3 0.0482 

(2.3948) 

0.0482 

(2.3948) 
... 0.0488 

(2.8466) 

0.0495 

(2.8933) 

0.0190 

(4.1810) 

X12 0.0073 

(1.5192) 

0.0073 

(1.5192) 
... 0.0071 

(4.0891) 

0.0066 

(3.8706) 

0.0036 

(7.2019) 

X23 -8.89 x10
-4

 

(-1.6294) 

-8.89 x10
-4

 

(-1.6294) 

... -8.41 x10
-4

 

(-2.3326) 

-9.58 x10
-4

 

(-2.7230) 

-3.84 x10
-4

 

(-2.2985) 

D4 4.4541 

(1.7624) 

4.4541 

(1.7624) 
... 4.0771 

(2.7071) 

3.8953 

(2.5890) 

3.5378 

(2.3433) 

D5 2.9009 

(1.4502) 

2.9009 

(1.4502) 
... 2.7642 

(2.0554) 

0.6558 

(4.6728) 

0.6633 

(4.7267) 

X1D2 -0.0506 

(-1.4784) 

-0.0506 

(-1.4784) 
... -0.0446 

(-2.5803) 

-0.0445 

(-2.5798) 

-0.0539 

(-3.1741) 

X1D3 -0.0539 

(-1.5431) 

-0.0539 

(-1.5431) 

... -0.0603 

(-2.4236) 

-0.0604 

(-2.4210) 

-0.0634 

(-2.5916) 

X2D3 0.1682 

(1.0680) 

0.1682 

(1.9919) 
... 0.1197 

(2.5689) 

0.1197 

(2.5605) 

0.1259 

(2.7461) 

X2D4 -0.1213 

(-1.8701) 

-0.1213 

(-1.8701) 
... -0.1473 

(-2.5067) 

-0.1403 

(-2.3885) 

-0.1263 

(-2.1412) 

X3D2 0.0049 

(1.1883) 

0.0049 

(1.1883) 
... 0.0064 

(1.9876) 

0.0064 

(1.9866) 

0.0082 

(2.6109) 

X13 -3.19x10
-4

 

(-1.2467) 

-3.19 x10
-4

 

(-1.2467) 

... -3.77 x10
-4

 

(-2.0835) 

-3.31 x10
-4

 

(-1.8462) 

- 

 

X2D5 -0.0856 

(-1.5707) 

-0.0856 

(-1.5707) 
... -0.0837 

(-1.5782) 

- 

 

- 

 

X1D5 -0.0066 

(-0.2640) 

-0.0066 

(-0.2640) 
... - 

 

- 

 

- 

 

X2D2 0.0828 

(1.0680) 

0.0828 

(1.0680) 

... 

- - - 
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TABLE 12 (continued) : Illustration of Elimination Procedure in getting Best Model (model M11.16) 

 

Variables 
Models 

M11 M11.1 ... M11.14 M11.15 M11.16 

D2 -1.3642 

(-0.5139) 

-1.3642 

(-0.5139) 
... - 

 

- 

 

- 

 

X3D3 
-0.0045 

(-1.0017) 

-0.0045 

(-1.0017) 

... - - - 

X3D4 -0.0028 

(-0.7211) 

-0.0028 

(-0.7211) 
... - - - 

X3D5 0.0010 

(0.3067) 

0.0010 

(0.3067) 
... - - - 

X1D4 -0.0067 

(-0.2118) 

-0.0067 

(-0.2118) 

... - - - 

D3 -0.4268 

(-0.1354) 

-0.4268 

(-0.1354) 
... - - - 

X1 -0.0134 

(-0.0954) 

-0.0134 

(-0.0954) 
... - - - 

X2 -0.0220 

(-0.0789) 

-0.0220 

(-0.0789) 

... - - - 

X3D1 -0.0399 

(0.0000) 

-0.0413 

(0.0000) 

... - - - 

X2D1 -0.0382 

(0.0000) 

-0.0886 

(0.0000) 
... - - - 

X1D1 -0.1062 

(0.0000) 

-0.3961 

(0.0000) 

... - - - 

D1 -13.6057 

(0.0000) 

- ... - - - 

ELIMINATION  STEPS STEP1 ... STEP14 STEP15 STEP16 

 

SSE 219.4469 219.4469 ... 219.8696 220.2922 220.5815 

G
2
 1585.3740 1585.3740 ... 1589.0096 1591.5108 1594.8262 

*tcritical  = 1.96 and value in parentheses is the tcal 

 
 

Goodness-of-fit Test 

The following phase is to check the validity of the best model. There are two 

tests on the goodness-of-fit. The tests are carried out based on the residuals 
obtained from the best model M11.16. The hypothesis for Pearson Chi-

Square test for best model M11.16 is as follows: 

 
T 1

0
H : E[Y] [1 exp( )]W −= + − Ω

 
T 1

1
H : E[Y] [1 exp( )]W −≠ + − Ω  
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The sum of squares of the Pearson residual is 2 3061.3122
pir

χ =
 

and 

the 2

critical
χ is 

2

0.95,3131
3174.1663χ = . Since 

2

pir
χ  is less than 2

critical
χ , the 

decision is to accept the null hypothesis where the best model M11.16 is an 
appropriate or correct model. The hypothesis for Deviance goodness-of-fit 

test is 

 
T 1

0
H : E[Y] [1 exp( )]W −= + − Ω

 
T 1

1
H : E[Y] [1 exp( )]W −≠ + − Ω  

 
The sum of squares of the Deviance residual (Deviance statistics) is 

2
G 1594.8261=  and the 2

critical
χ is 

2

0.95,3131
3174.1663.χ = The decision is to 

accept the null hypothesis since 2
G is less than 2

critical
χ . Therefore, the best 

model M11.16 is an appropriate model. The plot Figures 1, 2 and 3 show the 

distribution of ordinary residuals, Pearson residuals and Deviance residuals 

for best model M11.16 respectively. 
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Figure 1: Ordinary Residuals for best model M11.16 

 

 

In Figure 1, the ordinary residuals are plotted against the estimated 
probability. Here two trends of decreasing residuals with slope (for both 

lines) equal to -1 and form a parallel line.  

 

 

 

0
i
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1
i
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Figure 2: Pearson Residuals for best model M11.16 

 

The Figure 2 shows that the trend of the Pearson residuals is plotted against 

the estimated probability with slope equal to -1. 

 

 

Deviance Residuals
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Figure 3: Deviance Residuals for best model M11.16 

 
The Deviance residuals are plotted against the estimated probability. Here 

two trends of decreasing residuals with slope (for both lines) equal to -1 and 

form a parallel line. These three plots are used as supporting evidence to 
support the goodness-of-fit test. These three plots suggest that the model is 

correct where the trend of the plot of the residuals against the estimated 

probability (= ˆ
i

p ) appear approximately in a horizontal line with zero 

intercept.  
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DISCUSSION AND CONCLUSION 

This numerical illustration example is an experiment of case study 

(WCGS data) where the variables weight and height were modified to be 

body mass index (BMI). The second modification was on the systolic and 

diastolic blood pressures. These two variables was joined together to form a 
four category dummy variable. This enables to identify which category has 

contributed significantly in determining the occurrence of Coronary Heart 

Disease. The best model obtained is model M11.16 as listed in equation (9). 
Thus, this best model M11.16 is ready for further analysis. 

 
 

TABLE 13: Description on Best model 11.16 

 

Variables  Coefficients  Comments  

X3  0.0190  -Cholesterol level 

-Main factor  

D4  3.5378  -Blood pressure category (1 if SBP > 140 and DBP >90, 

or 0 if otherwise)  

-Main factor  

D5  0.6633  -Smoking habit 

-Main factor  

X12  0.0036  -Age (X1) and BMI (X2) 

-First-order interaction factor  

 X23  -3.84x10
-4 

 -BMI (X2) and Cholesterol level (X3) 

-First-order interaction factor  

X1D2  -0.0539  -Age (X1) and Blood pressure category (1 if SBP 100-129 

and DBP 60-79, 0 if otherwise)  

-First-order interaction factor  

X1D3  -0.0634  -Age (X1) and Blood pressure category (1 if SBP 130-139 

and DBP 80-89, 0 if otherwise) 

-First-order interaction factor  

X2D3  0.1259  -BMI (X2) and Blood pressure category (1 if SBP 130-

139 and DBP 80-89, 0 if otherwise)  

-First-order interaction factor  

X2D4  -0.1263  -BMI (X2) and Blood pressure category (1 if SBP > 140 

and DBP >90, 0 if otherwise) 

-First-order interaction factor  

X3D2  0.0082  -Cholesterol level (X3) and Blood pressure category  

(1 if SBP 100-129 and DBP 60-79, 0 if otherwise) 

-First-order interaction factor  
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As can be seen from the best model (in Table 13), the cholesterol 

level (X3), blood pressure category, D4 (1 if SBP > 140 and DBP > 90, or 0 
if otherwise) and smoking/non smoking category (D5) are the main factors 

that contribute to the occurrence of Coronary Heart Disease. The physical 

factors age (X1) and BMI (X2) interact together to indicate the strength of 
contribution in determining the occurrence of Coronary Heart Disease. The 

other blood pressure categories interact with factor age (X1), BMI (X2) and 

cholesterol level (X3) to show the effect in the occurrence of Coronary Heart 

Disease. 
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APPENDIX A (All Possible Models) 
 

M1: 
1 2 3 4 50 1 1 1 2 3 4 5

( )
D D D D D

Y X D D D D D uβ β β β β β β= + + + + + + +  

 

M2: 
1 2 3 4 50 2 2 1 2 3 4 5

( )
D D D D D

Y X D D D D D uβ β β β β β β= + + + + + + +  

 

M3: 
1 2 3 4 50 3 3 1 2 3 4 5

( )
D D D D D

Y X D D D D D uβ β β β β β β= + + + + + + +  

 

M4: 
1 2 3 4 50 1 1 2 2 1 2 3 4 5

( )
D D D D D

Y X X D D D D D uβ β β β β β β β= + + + + + + + +  

 

M5: 
1 2 3 4 50 1 1 3 3 1 2 3 4 5

( )
D D D D D

Y X X D D D D D uβ β β β β β β β= + + + + + + + +  

 

M6: 
1 2 3 4 50 2 2 3 3 1 2 3 4 5

( )
D D D D D

Y X X D D D D D uβ β β β β β β β= + + + + + + + +  

 

M7:
0 1 1 2 2 3 3

Y X X Xβ β β β= + + +
 

1 2 3 4 51 2 3 4 5
( )

D D D D D
D D D D D uβ β β β β+ + + + + +  

 

M8:
0 1 1 2 2 12 12

Y X X Xβ β β β= + + +

1 2 3 4 51 2 3 4 5
( )

D D D D D
D D D D Dβ β β β β+ + + + +  

1 2 3 4 5

1 2 3 4 5

1 1 1 1 1 2 1 1 3 1 1 4 1 1 5

2 2 1 2 2 2 2 2 3 2 2 4 2 2 5

( )

(

D D D D D

D D D D D

X D X D X D X D X D

X D X D X D X D X D u

β β β β β

β β β β β

+ + + + +

+ + + + + +
 

 

M9: 0 1 1 3 3 13 13Y X X Xβ β β β= + + +  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 1 1 1 1 2 1 1 3 1 1 4 1 1 5

3 3 1 3 3 2 3 3 3 3 3 4 3 3 5

( )

( )

( )

D D D D D

D D D D D

D D D D D

D D D D D

X D X D X D X D X D

X D X D X D X D X D u

β β β β β

β β β β β

β β β β β

+ + + + +

+ + + + +

+ + + + + +

 

 

M10: 0 2 2 3 3 23 23Y X X Xβ β β β= + + +  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 2 1 2 2 2 2 2 3 2 2 4 2 2 5

3 3 1 3 3 2 3 3 3 3 3 4 3 3 5

( )

( )

( )

D D D D D

D D D D D

D D D D D

D D D D D

X D X D X D X D X D

X D X D X D X D X D u

β β β β β

β β β β β

β β β β β

+ + + + +

+ + + + +

+ + + + + +
 

 

M11: 0 1 1 2 2 3 3 12 12 13 13 23 23Y X X X X X Xβ β β β β β β= + + + + + +  

1 2 3 4 51 2 3 4 5( )
D D D D D

D D D D Dβ β β β β+ + + + +  

1 2 3 4 51 1 1 1 1 2 1 1 3 1 1 4 1 1 5( )
D D D D D

X D X D X D X D X Dβ β β β β+ + + + +  
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1 2 3 4 5

1 2 3 4 5

2 2 1 2 2 2 2 2 3 2 2 4 2 2 5

3 3 1 3 3 2 3 3 3 3 3 4 3 3 5

( )

( )

D D D D D

D D D D D

X D X D X D X D X D

X D X D X D X D X D u

β β β β β

β β β β β

+ + + + +

+ + + + + +
 

 

M12: 0 1 1 2 2 3 3 12 12 13 13 23 23 123 123Y X X X X X X Xβ β β β β β β β= + + + + + + +  

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 1 1 1 1 2 1 1 3 1 1 4 1 1 5

2 2 1 2 2 2 2 2 3 2 2 4 2 2 5

3 3 1 3 3 2 3 3 3 3 3 4 3 3 5

( )

( )

( )

( )

D D D D D

D D D D D

D D D D D

D D D D D

D D D D D

X D X D X D X D X D

X D X D X D X D X D

X D X D X D X D X D u

β β β β β

β β β β β

β β β β β

β β β β β

+ + + + +

+ + + + +

+ + + + +

+ + + + + +

 

 
 

APPENDIX B (Selected Models) 
 

Selected 

Models 
Summary k+1 SSE G

2
 

M1.2 
2 4 50 1 1 2 4 5

ˆ ˆ ˆ ˆ ˆˆ
D D D

Y X D D Dβ β β β β= + + + +  5 227.7373 1680.2742 

M2.2 
2 4 50 2 2 2 4 5

ˆˆ ˆ ˆ ˆˆ
D D DY X D D Dβ β β β β= + + + +ɺɺ  5 230.7942 1707.9998 

M3.2 
2 4 50 3 3 2 4 5

ˆ ˆ ˆ ˆ ˆˆ
D D DY X D D Dβ β β β β= + + + +  5 226.2680 1655.7950 

M4.2 
2 4 50 1 1 2 2 2 4 5

ˆ ˆ ˆ ˆ ˆ ˆˆ
D D D

Y X X D D Dβ β β β β β= + + + + +  6 227.4519 1673.2856 

M5.2 
2 4 50 1 1 3 3 2 4 5

ˆ ˆ ˆ ˆ ˆ ˆˆ
D D D

Y X X D D Dβ β β β β β= + + + + +  6 223.5564 1624.7742 

M6.2 
2 4 50 2 2 3 3 2 4 5

ˆ ˆ ˆ ˆ ˆ ˆˆ
D D D

Y X X D D Dβ β β β β β= + + + + +  6 226.5131 1651.6374 

M7.3 
2 50 1 1 2 2 3 3 2 5

ˆ ˆ ˆ ˆ ˆ ˆˆ
D D

Y X X X D Dβ β β β β β= + + + + +  6 223.8264 1621.8572 

M8.10 
4 5 2 3

3 4 5

0 12 12 4 5 1 1 2 1 1 3

2 2 3 2 2 4 2 2 5

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ       

D D D D

D D D

Y X D D X D X D

X D X D X D

β β β β β β

β β β

= + + + + +

+ + +

 
9 225.5515 1655.0016 

M9.12 
4 2 2

5

0 1 1 3 3 4 1 1 2 3 3 2

3 3 5

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ       

D D D

D

Y X X D X D X D

X D

β β β β β β

β

= + + + + +

+

 
7 222.6976 1617.3000 

M10.11 
2 4 5

2 4

0 2 2 3 3 2 4 5

2 2 2 2 2 4

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ       

D D D

D D

Y X X D D D

X D X D

β β β β β β

β β

= + + + + +

+ +

 
8 224.9670 1638.1478 

 
 

 



Model-Building Approach in Multiple Binary Logit Model for Coronary Heart Disease 

 

 Malaysian Journal of Mathematical Sciences 133 

 

 

APPENDIX B (Selected Models) (continued) 
 

Selected 

Models 
Summary k+1 SSE G

2
 

M11.16 

4 5

2 3 3 4

2

0 3 3 12 12 23 23 4 5

1 1 2 1 1 3 2 2 3 2 2 4

3 3 2

ˆ ˆ ˆ ˆ ˆ ˆˆ

ˆ ˆ ˆ ˆ      

ˆ      

D D

D D D D

D

Y X X X D D

X D X D X D X D

X D

β β β β β β

β β β β

β

= + + + + +

+ + + +

+

 
11 220.5815 1594.8262 

M12.16 

4 5

2 3 3 4

5 2

0 3 3 12 12 123 123 4 5

1 1 2 1 1 3 2 2 3 2 2 4

2 2 5 3 3 2

ˆ ˆ ˆ ˆ ˆ ˆˆ  

ˆ ˆ ˆ ˆ       

ˆ ˆ       

D D

D D D D

D D

Y X X X D D

X D X D X D X D

X D X D

β β β β β β

β β β β

β β

= + + + + +

+ + + +

+ +

 
12 219.9174 1589.8590 

 


